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SUMMARY

An approach to invariant image recognition [I2R], based upon a
model of biological vision in the mammalian visual system [MVS], is
described. The complete I2R model incorporates several biologically
inspired features: exponential mapping of retinal images, Gabor spatial
filtering, and a neural network associative memory. In the I2R model,
exponentially mapped retinal images are filtered by a hierarchical set
of Gabor spatial filters [GSF] which provide compression of the
information contained within a pixel-based image. A neural network
associative memory [AM] is used to process the GSF coded images. We
describe a 1-D shape function method for coding of scale and
rotationally invariant shape information. This method reduces image
shape information to a periodic waveform suitable for coding as an
input vector to a neural network AM. The shape function method is
suitable for near term applications on conventional computing
architectures equipped with VLSI FFT chips to provide a rapid image
search capability.

INTRODUCTION

Neural networks offer a potential for technology innovation to
provide the next generation of on-board processing [OBP] capability in
space-based systems for strategic defense and surveillance as well as
other non-military space applications such as remote sensing of the
environment. The data collection capabilities of space-based imaging
sensors are expected to continue to improve dramatically, further
outstripping the ability of operators to exploit image data in real
time. One of the goals of the Image Processing Research [IPR] Program
at the NRL Naval Center for Space Technology is to develop applications

for neural network-based invariant image recognition [I2R] [1-4].

The encoding of images by the mammalian visual system [MVS] is a
subject which has challenged vision researchers for centuries. In the
past several years significant progress has been made by Daugman and
others towards an understanding of how images are processed within the
MVS [5-12]. The basic architecture for invariant image recognition is
shown in Figure 1. We assume that the MVS performs a sequence of space
and space-time mappings which we call scale-space transformations [SST]
[1,2]. The first SST to occur in the MVS is a logarithmic spatial
mapping which occurs in the retina in the vicinity of the fovea. This

203




mapping, which we call the LZ-SST, produces scale and rotational
invariance in the foveal image [14,15]. A second SST, which we call the
cortical filter SST, or CF-SST, occurs throughout the lateral
geniculate nucleus and the striate cortex. The function of the CF-SST
is to provide a coded representation of the image for associative
memory processing which takes place in higher cortical areas. We have
suggested that, among other operations, the CF-SST includes a
hierarchical network of Gabor filters to map the retinal image into a
four-dimensional function of two spatial variables and two spatial-
frequency variables. Functionally, this mapping is equivalant to
computation of the 4-D Cross-Wigner Distribution [CWD][1,12,13]. These
complex spatial filtering operations occur within the the second block
shown at the top of Figure 1. The encoded image features are then
processed by the neural network associative memory [AM] as shown in
the third block of Figure 1.

In the next section we describe the shape function method for
coding of scale and rotationally invariant shape information into a
scalar waveform. This method can reduce line object shape information
to a scalar waveform suitable for processing by a VLSI FFT array or for
coding as an input vector to a neural network AM.

CODING OF SHAPE FUNCTIONS

Motivated by the properties of the MVS, we can represent a static
image by means of a hierarchical relational graph [HRG][4]. At each
level of the hierarchy, we constructed a set of nodes (simple objects),
and a relational graph (complex object) based upon the relations
between the nodes. At the next lowest level in the hierarchy (finer
resolution), each node is treated as a complex object, composed of its
own set of connected simple objects. Although, we describe the HRG
structure in a top-down manner, in the MVS data flow actually takes
place in a bottom-up manner, since image information is first processed
in the visual cortex, then sent to higher areas of the brain, such as
the cerebral cortex. Recognition of a face can be used as a simple
example of this process. Starting with the placement of features (e.g.
eyes, nose, etc.) we recognize a face as a complex object composed of
simple objects (features). On the next hierarchical level we examine
individual facial features. Fig. 2 illustrates the hierarchical
representation of object shape. The complex object F1[-],shown in
Figure 2, can be represented in terms of a three-level hierarchical

notation Fq[Gq1[H1], Go[Hp]].

Figure 3 illustrates a two-step process which can be used to
obtain the shape features of a broad-band multi-level image. The
nonlinear trace operation shown in Figure 3 (b) converts a bit-mapped
image into a set of objects. An example of this type of trace operation
can be found in commercial microcomputer software (e.g. Digital
Darkroom® ).

Shape information can be used in the construction of object

features vectors useful for object recognition. We illustrate how,
after posterization and tracing between fixed grey levels, shape
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information can be coded into a scalar shape function which
characterizes a line object. For high speed applications which require
special purpose hardware, such as VLSI array processors implementing
FFT algorithms, these shape functions can be processed with
conventional computers (e.g a Hypercube® or a Connection Machine®). In
the future, when massively parallel neural network computers become
available, shape functions can be coded into feature vectors for input
to a neural network AM.

As an illustration of the shape function process, an aircraft
line object is shown in Figure 4 (a) together with the corresponding
shape function shown in Figure 4 (b). To compute the shape function, we
first select a suitable centroid within the object boundary. The shape
function is then defined as the distance from this centroid to the
object contour measured as a function of distance around the object
perimeter. Figure 4 (b) is a plot of the aircraft shape function
measured from the nose (top). Individual features, such as the engines,
can be clearly identified. Figures 5 and 6 show line objects and shape
functions for two other aircraft of different types. Figures 7 and 8
show the data for two of the aircraft with a 10 db S/N. The identifying
features of each aircraft are still clearly visible in the shape
functions. In practice, a sequence of noisy images will usually be
available for processing. If the spatial noise background between
images in the sequence is uncorrelated, an improvement in S/N will
occur when averaging over multiple frames.

CONCLUDING REMARKS

A model for invariant image recognition, based on the properties
of the MVS, has been described. The model includes a hierarchical
representation of shape information for complex objects. Each level in
the hierarchy is represented by a collection of line objects. Through a
nonlinear tracing operation the pixel image of each objects is
converted to a shape contour. This contour is then represented by a
scalar shape function defined as the distance from a centroid within
the object to the contour expressed as a function of distance around
the object perimeter. This scalar shape waveform uniquely represents
object features and can be processed with conventional FFT hardware.
Simulations are used to demonstrate the viability of the approach.
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Figure 2. A hierarchical representation for object shape
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Figure 3. Steps in obtaining shape features from a broad-band image.
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Figure 5(a) Aircraft 2 line obiject

1.0

\
i 0 50 100 150 200 250

Figure 5(b) Aircraft 2 shape function.
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